Acta Cryst. (1995). C51, 462-465

4-Methoxy-11-oxo-5-azabenzo[b]fluorene N-Oxide and its Free Base

MACIEJ KUBICKI AND TERESA BOROWIAK

Laboratory of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

WIESŁAW Z. ANTKOWIAK

Laboratory of Organic Spectrochemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

(Received 5 July 1994; accepted 14 September 1994)

Abstract

The crystal structures of 4-methoxy-11-oxo-5-azabenzo-[b]fluorene N-oxide, $C_{17}H_{11}NO_3$, (1), and its free base, 4-methoxy-11-oxo-5-azabenzo[b]fluorene, $C_{17}H_{11}NO_2$, (2), have been determined. The 2-phenylquinoline skeleton in both compounds has been stiffened by linking the 3 and 6' positions with the rigid >C=O group. The presence of the N-oxide group in the 'bay region' of molecule (1) causes steric stress which is relieved by significant changes in the geometry of the molecule. Despite the planarity of the molecules, there is no other evidence for conjugation across the five-membered ring.

Comment

In the course of our studies on the mechanism of the surprisingly easy stepwise deoxygenation of orellanine (3,3',4,4'-tetrahydroxy-2,2'-bipyridine-1,1'dioxide) (Antkowiak & Gessner, 1979), we have shown that 2-phenylpyridine derivatives could serve as model compounds for this reaction (Antkowiak & Gessner, 1984; Kubicki, Borowiak, Antkowiak & Antkowiak, 1990). Recently, we reported the crystal structures of some compounds in which the 2-phenylpyridine skeleton was bridged at the 3 and 6' positions (C4a and C5a in Figs. 1 and 2) by the --CH₂--CH₂-- group in order to limit the conformational freedom around the central C11a-C11b bond (Kubicki, Borowiak, Chruścicki & Antkowiak, 1993; Kubicki, Borowiak, Antkowiak, Antkowiak & Chruścicki, 1994). We have also shown that the presence of an additional phenyl ring fused at the 5 and 6 positions (at C6a and C10a) has no significant effect on the 'bay region' (O1, C1, C11b, C11a and N11) (Kubicki, Borowiak & Antkowiak, 1995). We have also performed X-ray crystallographic studies of molecules with more restricted conformations, *i.e.* containing the rigid >C=O group instead of

© 1995 International Union of Crystallography

Printed in Great Britain - all rights reserved

the flexible ethylene bridge. In this paper, we present the results for two compounds: 4-methoxy-11-oxo-5azabenzo[b]fluorene N-oxide, (1), and its free base, 4methoxy-11-oxo-5-azabenzo[b]fluorene, (2). The presence of a 4-azafluorene skeleton, which occurs in onychine alkaloids from Brazilian and African Annonaceae species (Koyama, Okatani, Tagahara & Irie, 1989; Bou-Abdallah, Jossang, Tadic & Cave, 1989), makes the intramolecular interactions in these compounds of interest.

Introduction of the N-oxide function into the bay region induces significant steric stress. It is relieved mainly through a change of geometry at the bay region (e.g. an increase of all exocyclic bond angles within this region), but it also changes the overall shape of the molecule. While molecule (2) is almost perfectly planar, there is significant folding in molecule (1). For (2), all deviations from the least-squares plane through the 17 skeleton atoms are within 5σ , both O atoms are perfectly coplanar with this plane [with deviations of 0.025 (7) Å for O1 and 0.005 (7) Å for O5] and the dihedral angle between the terminal ring planes, B and C, is $1.3(3)^{\circ}$. For (1), the folding is apparent in every parameter: the deviations from the plane are within 40σ , the O atoms lie significantly out of this plane [by 0.208(3), -0.196(3) and -0.177(3) Å for O1, O5 and O11, respectively] and the dihedral angle between the ring planes B and C is $3.9(1)^{\circ}$.

The changes in the geometry at the bay region of (1) result in a shorter non-bonding H2···C12 contact than in (2), while the $O1 \cdots N11$ distance is longer than in (2). This conformational change can be also seen by comparing the angles O1-C1-C2, O1-C1-C11b and C1-C12 (Table 3). Whereas the main factor determining the geometry of the bay region in (2) is a weak $H \cdots H_3C$ repulsion, the O1 \cdots O11 interaction is crucial in (1). However, the O1...O11 distance of 2.626(3) Å is still much shorter than the sum of the van der Waals radii (Bondi, 1964), and is also ca 0.1 Å shorter than the corresponding value in compounds with a flexible ethylene bridge. Despite the planarity of the five-membered ring, the bond lengths and angles indicate only slight, if any, conjugation across this ring. The weighted mean values of the C11a-C11b, C4a-C5 and C5-C5a bond lengths, 1.47(2) Å for (1) and 1.477 (3) Å for (2), agree with the typical value of 1.478 Å for a non-conjugated C_{sp^2} — C_{sp^2} single bond (Allen, Kennard, Watson, Bramer, Orpen & Taylor, 1987). Such lack of conjugation has been observed for other fluorene derivatives, but is in contrast to that found for the fluorenyl anion (Zerger, Rhine & Stucky, 1974) and 9-diazafluorenone (Tulip, Corfield & Ibers, 1987, and the discussion therein).

The fusion of the five-membered ring D causes a decrease in the angles adjacent to the points of fusion, in agreement with the findings of Allen (1981). The N— O bond length in (1), 1.284 (2) Å, is close to the value of 1.2806 (4) Å found for pyridine N-oxide (Sørensen, Mahler & Rastrup-Andersen, 1974) and is typical for an N—O bond uninvolved in hydrogen bonding.

The packing of both compounds are similar and involve centrosymmetric pairs of the molecules extending into columns along [001]. The distances between the planes of the molecules [about 4.1 Å for (1) and 3.7 Å for (2)] are too long to allow significant π stacking interactions. Similar crystal packing has been

Fig. 1. Displacement ellipsoid representation of (1) with the labelling scheme. The ellipsoids are drawn at the 50% probability level for non-H atoms; H atoms are drawn as spheres with arbitrary radii.

Fig. 2. Displacement ellipsoid representation of (2) with the labelling scheme. The ellipsoids are drawn at the 50% probability level for non-H atoms; H atoms are drawn as spheres with arbitrary radii.

observed in some other oxofluorene derivatives, *e.g.* in 9-oxofluorene-4-carboxylic acid (Kennard, Smith & Katekar, 1981, and references therein).

Experimental

The preparation of both compounds has been described elsewhere (Antkowiak, Antkowiak & Czerwiński, 1990). Crystals of (1) were obtained by slow evaporation of a CHCl₃-benzene mixture, while crystals of (2) were obtained (with difficulty) from toluene.

Compound (1)

Crystal data	
$C_{17}H_{11}NO_3$	Cu $K\alpha$ radiation
$M_r = 277.27$	$\lambda = 1.54178 \text{ Å}$
Orthorhombic	Cell parameters from 15
Pbca	reflections
a = 21.023(1) Å	$\theta = 18.06 - 47.15^{\circ}$
b = 14.907(1) Å	$\mu = 0.815 \text{ mm}^{-1}$
c = 8.2059(7) Å	T = 293 (2) K
$V = 2571.6(3) \text{ Å}^3$	Prism
Z = 8	$0.35 \times 0.20 \times 0.18$ mm
$D_{\rm x} = 1.432 {\rm Mg m^{-3}}$	Red

Data collection

Syntex $P2_1$ diffractometer $\omega/2\theta$ scans Absorption correction: none 1204 measured reflections 1204 independent reflections 1199 observed reflections $[I > 2\sigma(I)]$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0380$ $wR(F^2) = 0.0825$ S = 1.0871200 reflections 191 parameters H-atom parameters not refined $w = 1/[\sigma^2(F_o^2) + (0.0276P)^2 + 1.5593P]$ where $P = (F_o^2 + 2F_c^2)/3$

Compound (2)

Crystal data $C_{17}H_{11}NO_2$ $M_r = 261.27$ Monoclinic $P2_1/n$ a = 7.470 (1) Å b = 20.033 (2) Å c = 8.970 (2) Å $\beta = 111.91$ (1)° 2 standard reflections monitored every 100 reflections intensity decay: 2.4%

 $\theta_{\rm max} = 57.28^{\circ}$

 $h = 0 \rightarrow 22$

 $k = 0 \rightarrow 16$

 $l = 0 \rightarrow 8$

$$\begin{split} &\Delta \rho_{\text{max}} = 0.153 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{\text{min}} = -0.109 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction:} \\ &F_c^* = kF_c [1 + (0.001 \\ & \times F_c^2 \lambda^3 / \sin 2\theta)]^{-1/4} \\ &\text{Extinction coefficient:} \\ &0.0022 \text{ (3)} \\ &\text{Atomic scattering factors} \\ &\text{from International Tables} \\ &\text{for Crystallography (1992, Vol. C, Tables 4.2.6.8 and} \\ &6.1.1.4) \end{split}$$

Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 15 reflections $\theta = 13.31-25.73^{\circ}$ $\mu = 0.744$ mm⁻¹ T = 293 (2) K Thin prism

C₁₇H₁₁NO₃ AND C₁₇H₁₁NO₂

V = 1245	.4 (4) Å ³		$0.20 \times 0.08 \times 0$.05 mm	05	0.6556 (8)	0.3896 (3)	-0.3592 (6) -0.1690 (7)	0.093 (2)
Z = 4	-3		Pale yellow		C5a C6	0.5691 (9)	0.5310 (3)	-0.2535(8)	0.057 (2)
$D_x = 1.39$	3 Mg m^{-3}				C6a	0.5550 (9)	0.5882 (3)	-0.1709 (8)	0.054 (2)
Data coll	action				C7	0.4523 (9)	0.6466 (4)	-0.2457 (9)	0.065 (2)
Dala colle			o 55.000		C9	0.5508 (9)	0.7004 (3)	0.0096 (9)	0.064 (2)
Syntex P	2_1 diffractome	eter	$\theta_{\rm max} = 57.33^{\circ}$		C10	0.6480 (10)	0.6463 (3)	0.0877 (8)	0.054 (2)
$\omega/2\theta$ scar	15		$h = 0 \rightarrow 8$		C10a	0.6593 (9)	0.5891 (3)	-0.0027 (8)	0.049 (2)
Absorptio	on correction:		$k = 0 \rightarrow 21$		NII Clia	0.7643 (8)	0.5348 (3)	0.0865 (6)	0.053(2)
refined	from ΔF		$l = -9 \rightarrow 8$		Clib	0.8725 (9)	0.4194 (3)	0.0603 (8)	0.048 (2)
(DIFAL	ss; walker &		2 standard renec		-				()
Stuart,	1983)		monitored eve	ry 100	Table 3. Selected geometric parameters (A, °)				
1203 mea	isured renection	ons	renections		<i>for</i> (1) <i>and</i> (2)				
742 abase	ependent rene	ctions	intensity decay	: 3%			(1)		(2)
745 ODSet		IS			C1-	01	1.348 (3	3)	1.374 (8)
I > 20	5(1)]				C1-	C2	1.397 (4	l)	1.392 (9)
Refineme	nt				01-		1.398 (3	5) {}	1.394 (8)
r_{i}			C2-		1.377 (4	,, })	1.404 (9)		
Refineme	nt on F^2	-	$\Delta \rho_{\rm max} = 0.216 {\rm e}$	A - 3	C3-	C4	1.378 (4	l)	1.353 (9)
$R[F^2 > 2$	$\sigma(F^2) = 0.07$	/1	$\Delta \rho_{\rm min} = -0.210$	$v_{\min} = -0.210 \text{ e A}^{-3}$ C4C4a			1.381 (4	1)	1.376 (8)
$WK(F^{-}) =$	0.1561		Extinction correct	tion: none	C4a C4a	I	1.399 (3	3)	1.434 (8)
5 = 2.423) 		Atomic scatterin	g factors	C5-	05	1.218 (3	3)	1.260 (7)
1195 rene	ections		from Internati	onal Tables	C5-	C5a	1.478 (4	4)	1.419 (9)
182 parar	neters		for Crystallog	rapny (1992,	C5a		1.354 (3	3)	1.393 (8)
H-atom p	arameters not		Vol. C, Tables	4.2.6.8 and	C58 C6-		1.421 (2	5) 1)	1.421 (8)
refined $w = 1/l \sigma^2$	$2(E^2) + (0.02)$	ו ² ו ס רו	6.1.1.4)		C6a	щ—С7	1.407 (4	4)	1.423 (8)
w = 1/[0]	$(F_0) \neq (0.05)$ $P = (F^2 + 2)$	$501 $ j $z^{2} \sqrt{2}$			C6a		1.409 (3	3)	1.416 (8)
where	$\mathbf{r} = (\mathbf{r}_0 + 2\mathbf{I})$	r c) 3			C7-		1.366 (4	4) 1)	1.360 (9)
Table 1	Enastional		a and in a tag and	aninalant	C9-		1.364 (3	3)	1.347 (8)
Table 1.	Fractional	aiomic (coordinates and	equivalent	C10	—C10a	1.390 (3	3)	1.424 (8)
isol	ropic displac	cement p	arameters (A ²)	for (1)	C10)aN11	1.427 (3	3)	1.404 (7)
	Una =	$(1/3)\Sigma_{i}\Sigma_{j}$			NI	-011	1.339 (3	5) 2)	1.300(7)
	ં સ્	(-//	<i>j</i> = <i>i</i> =		C11	a-C11b	1.475 (3	3)	1.485 (8)
CI	x 0 57903 (13)	y 0 6377 (2	$\frac{z}{0.2845(3)}$	U_{eq}	01-		122.6 (2	2)	125.0 (6)
01	0.61256 (10)	0.56501 (12) 0.2382 (3)	0.0880 (7)	01-	C1C11b	119.2 (2	2)	115.4 (7)
C12	0.5903 (2)	0.4795 (2) 0.2729 (5)	0.117 (2)	C2-	C1C11b	118.2 (2	2)	119.6 (7)
C2	0.52269 (14)	0.6315 (2	() 0.3742 (3)	0.0654 (8)	C1-	-01C12	120.3 (2	2)	117.6 (6)
C4	0.49124(14) 0.51424(14)	0.7000 (2	0.4292(4)	0.0635 (8)	C2-	C3C4	121.0 (3	3)	120.8 (7)
C4a	0.56918 (13)	0.7980 (2	0.3056 (3)	0.0547 (7)	C3-	C4C4a	117.5 (3	3)	120.4 (7)
C5	0.60084 (13)	0.8816 (2	() 0.2526 (4)	0.0595 (7)	C4-		123.1 (2	2)	120.3 (6)
05 C5a	0.58187(9) 0.65757(12)	0.95806 ((12) $(0.2721(3))(1) (0.1595(3))$	0.0811(7)	C5-	-C4a $-C11b$	120.0 (2	2)	133.1 (6)
C6	0.70319 (12)	0.9033 (2	() 0.0868 (3)	0.0594 (8)	05-		126.9 (3	3)	127.8 (7)
C6a	0.75146 (14)	0.8585 (2) -0.0008 (3)	0.0542 (7)	05-	C5C4a	127.1 (2	3)	124.0 (7)
C7	0.80213 (14)	0.9031 (2	-0.0782(4)	0.0675 (8)	C4a		105.9 (2	2)	108.2 (6)
C9	0.84325 (13)	0.7635 (2	-0.1757(4)	0.0643 (8)	C5-	-C5a $-C11a$	107.2 (2	2)	110.0 (6)
C10	0.79527 (13)	0.7174 (2	-0.1017 (3)	0.0575 (7)	C6-		122.9 (3	3)	117.7 (6)
C10a	0.74956 (12)	0.7642 (2	-0.0137(3)	0.0505 (7)	C5a		118.2 (2	2)	119.6 (6)
011	0.69994(10) 0.69883(10)	0.62939 ((12) 0.0630 (3) (11) 0.0385 (3)	0.0332 (6)	C/- C6-	-C6a	117.3 (2	2)	118.5 (6)
Clla	0.65651 (11)	0.7581 (2	0.1522 (3)	0.0478 (7)	C6-	-C6a-C10a	119.3 (2	2)	117.2 (6)
Cllb	0.60206 (11)	0.72315 ((14) 0.2462 (3)	0.0490 (6)	C6a	⊷ C7 −C8	121.0 (3	3)	121.1 (7)
Table 2.	Fractional	atomic of	coordinates and	l equivalent	-/- C8-		120.2 (3	5) 3)	119.1 (7)
isotropic displacement parameters $(\hat{\Delta}^2)$ for (?)				C9-	C10C10a	119.3 (2	2)	119.1 (6)	
$\frac{1}{2}$				C10	C10-C10a-C6a 121.4 (2) 119			119.4 (6)	
	$U_{eq} =$	$(1/3)\Sigma_i\Sigma_i$	$U_{ij}U_{ij}a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j.$		C10		118.2 (2	2)	116.0 (6) 124 4 (6)
	x	ν	Z	Um	01	I = N11 = C11a	120.4 (2	2)	- (0)
C1	0.9814 (9)	0.3958 (4) 0.2138 (8)	0.057 (2)	01	I—N11—C10a	117.3 (2	2)	-
01	1.0062 (7)	0.4402 (2	() 0.3369 (6)	0.076 (2)	C10)aN11C11a	119.1 (2	2)	114.3 (5)
C12 C2	1.1103 (10) 1.0595 (10)	0.3318 //	(8) U.5003 (8) (1) 0.2325 (9)	0.079 (2) 0.070 (2)	C5a N11	-C11a-N11	119.9 (2	<u>2)</u>	120.5 (0)
C3	1.0271 (10)	0.2911 (4) 0.0975 (10)	0.069 (2)	C5a	-Clla-Cllb	110.0 (2	2)	106.9 (6)
C4	0.9145 (10)	0.3122 (3) -0.0512 (9)	0.066 (2)	C1-	C11bC4a	118.4 (2	2)	118.6 (6)
C4a C5	0.8405 (9)	0.3759 (3	-0.0743(8) -0.2189(9)	0.049 (2)	C1-		135.1 (2	2) 2)	132.9 (7) 108 4 (5)
	2.7.22 (11)	0.4101 (4	, 0.2107(7)	0.070(2)	070		100.5 (2	-,	

The poor quality of the crystals of (2) and their weak diffraction power are probably responsible for the relatively high value for R. In this case, *DIFABS* (Walker & Stuart, 1983) was used for an absorption correction as the appropriate number of strong reflections with useful setting angles was not found.

For both compounds, data collection: $P2_1$ software; cell refinement: $P2_1$ software; data reduction: *PRADIR* (Jaskólski, 1990); program(s) used to solve structures: *SHELXS86* (Sheldrick, 1990); program(s) used to refine structures: *SHELXL93* (Sheldrick, 1993); molecular graphics: *Stereochemical Workstation* (Siemens, 1989); software used to prepare material for publication: *SHELXL93*.

This study was supported jointly by projects 2 0759 91 01 KBN and S/II.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, bond distances and angles involving non-H atoms for compound (1), bond distances and angles involving H atoms for compound (2), and torsion angles have been deposited with the IUCr (Reference: AB1206). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H. (1981). Acta Cryst. B37, 900-906.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. Antkowiak, R., Antkowiak, W. Z. & Czerwiński, G. (1990). Tetrahe-
- dron, **46**, 2445–2452.
- Antkowiak, W. Z. & Gessner, W. P. (1979). Tetrahedron Lett. 20, 1931–1934.
- Antkowiak, W. Z. & Gessner, W. P. (1984). Tetrahedron Lett. 25, 4045–4048.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Bou-Abdallah, E., Jossang, A., Tadic, D. & Cave, A. (1989). J. Nat. Prod. 52, 273–278.
- Jaskólski, M. (1990). PRADIR. Program for Data Reduction. Adam Mickiewicz Univ., Poznań, Poland.
- Kennard, C. H. L., Smith, G. & Katekar, G. F. (1981). Aust. J. Chem. 34, 1143-1146.
- Koyama, J., Okatani, T., Tagahara, K. & Irie, H. (1989). *Heterocycles*, **29**, 1649–1654.
- Kubicki, M., Borowiak, T. & Antkowiak, W. Z. (1995). Acta Cryst. C51, 458–461.
- Kubicki, M., Borowiak, T., Antkowiak, R. & Antkowiak, W. Z. (1990). J. Crystallogr. Spectrosc. Res. 20, 381–387.
- Kubicki, M., Borowiak, T., Antkowiak, R., Antkowiak, W. Z. & Chruścicki, H. (1994). *Recl Trav. Chim. Pays-Bas.* 113, 383–389.
- Kubicki, M., Borowiak, T., Chruścicki, H. & Antkowiak, W. Z. (1993). J. Crystallogr. Spectrosc. Res. 23, 113-118.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Góttingen, Germany.
- Siemens (1989). Stereochemical Workstation. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
- Sørensen, G. O., Mahler, L. & Rastrup-Andersen, N. (1974). J. Mol. Struct. 20, 119-124.
- Tulip, T. H., Corfield, P. W. R. & Ibers, J. A. (1978). Acta Cryst. B34, 1549–1555.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Zerger, R., Rhine, W. & Stucky, G. D. (1974). J. Am. Chem. Soc. 96, 5441-5448.

© 1995 International Union of Crystallography

Printed in Great Britain - all rights reserved

Acta Cryst. (1995). C51, 465-468

A Baccatin III Derivative

Angèle Chiaroni, Daniel Guénard, Françoise Guéritte-Voegelein, Françoise Khuong-Huu, Sandrine Py, Claude Riche and Anne Wahl

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif sur Yvette CEDEX, France

(Received 12 May 1994; accepted 26 June 1994)

Abstract

The title compound, 3,4,6,8,11-pentahydroxy-4demethyl-1-triethylsiloxy-5,4-epoxymethanotaxen-12one (C₂₆H₄₄O₈Si), has been prepared in the search for new semi-synthetic analogues of taxol. It has been obtained from 2-debenzoyl-4,10-bisdeacetyl-7-

triethylsilyl-baccatin III when treated in an alkaline or acidic medium. The structure was established as part of a contribution to the knowledge of structure-activity relationships. An intramolecular hydrogen bond is established between the hydroxyl groups HO13 and HO4. In addition, a hydrogen-bond network engaging all the hydroxyl groups of the molecule links the different molecules in the crystal.

Comment

Taxol paclitaxel, a diterpene isolated in only low yield from the bark of several species of the Taxus genus (Wani, Taylor, Wall, Coggon & McPhail, 1971) and taxotere, a semi-synthetic analogue, are two of the most promising new drugs studied in the field of cancer chemotherapy (Guénard, Guéritte-Voegelein & Potier, 1993; Rose, 1992; Horwitz, 1992; Therre, 1993). They act by a unique mechanism: both promoting the assembly of tubulin into microtubules and stabilizing the microtubule assembly against depolymerization. The knowledge of the three-dimensional structure of either active or inactive compounds in this series is important in order to establish structure-activity relationships. The title compound, (1), has been obtained by rearrangement of 2-debenzoyl-4,10-bisdeacetyl-7triethylsilyl-baccatin III (2) in an alkaline or acidic medium (Wahl, Guéritte-Voegelein, Guénard, Le Goff & Potier, 1992; Farina & Huang, 1992), 10-deacetylbaccatin III being a natural precursor of taxol isolated from yew leaves (Chauvière, Guénard, Picot, Senilh & Potier, 1981). After introduction of the taxotere-O13side-chain in compound (1), the product thus obtained shows no inhibition of the rate of diassembly $(IC_{50} = 0)$ of tubulin.